Algorithmic Optimization of a Constrained Enumeration
This article elucidates the optimization of an algorithm designed for a constrained counting problem, integral to a Project Euler solution. This article is refined by gemini.
The core challenge involves calculating the sum of all possible values of \(f(a, b)\) under the following constraints:
\[\begin{array}{l} 1 <= i <= n - t - 1 \\ 1 <= j <= n - delta - t - 1 \\ 1 <= k <= n - delta - t - 1 \\ coe1_0 * i + coe1_1 * j + coe1_2 * k + coe1_3 + a = 0 \\ coe2_0 * i + coe2_1 * j + coe2_2 * k + coe2_3 + b = 0 \\ \left \vert coe2_{0,1,2}\right \vert = 1\\ coe1_i = 2\ coe2_i \text{ for } i = 0,1,2\\ \end{array}\]where \(n, t, delta, coe1_{0..3}, coe2_{0..3}\) are predetermined constants. Crucially, all variables represent integers.
The initial approach involves nested loops to iterate through all possible values of a
, b
, i
, j
, and k
. The optimization progressively eliminates these loops, significantly improving efficiency.
1. Reducing enumerated a
and eliminating the b
Loop
Given the relationship \(coe1_i = 2\ coe2_i\) for \(i = 0,1,2\), subtracting twice the second equation from the first yields:
\[a - 2\ b = 2\ coe2_3 - coe1_3\]This reveals two key insights:
a
andcoe1_3
must share the same parity.- Once
a
is determined,b
can be directly calculated, thus eliminating the need for a loop overb
.
2. Eliminating the k
Loop
Focusing on the second constraint equation: \(coe2_0 * i + coe2_1 * j + coe2_2 * k + coe2_3 + b = 0\). When the parameters i
and b
are defined, the equation indicated j
and k
has a linear relationship. Therefore the loop of k
is unnecessary when j
is determined.
3. Eliminating the j
Loop
Let \(c = -b - coe2_3 - coe2_0 * i\). The equation from step 2 can be rearranged to express j
in terms of k
:
where \(u = \frac{c}{coe2_1}\) and \(v = -\frac{coe2_2}{coe2_1}\). The valid range for k
is then determined by the following:
Combined with the original constraint \(1 <= k <= n - delta - t - 1\), the possible values of k
fall within a defined range, eliminating the need for a j
loop.
Current Optimized Code:
for (all possible a) {
int tmp = a - (2 * coe2[3] - coe1[3]);
if (IsOdd(tmp)) continue;
int b = tmp / 2;
if (!IsValid(b)) continue;
if (!SameParity(coe1[3], a)) continue;
for (int i = 1; i <= n - t - 1; ++i) {
int c = -b - coe2[3] - coe2[0] * i;
int u = c / coe2[1];
int v = -coe2[2] / coe2[1]; // Note: |v| = 1.
int64 L = (1 - u) / v;
int64 R = (n - delta - t - 1 - u) / v;
if (v < 0) {
swap(L, R);
}
if (1 > L) L = 1;
if (n - delta - t - 1 < R) R = n - delta - t - 1;
if (L <= R) ans += (R - L + 1) * f(a, b);
}
}
4. Eliminating the i
Loop
The final optimization involves removing the loop over i
. The range of i
influences the bounds L
and R
through the variable u
. Analyzing the impact of i
on u
:
int v = -coe2[2] / coe2[1];
int u1 = (-b - coe2[3] - coe2[0] * 1) / coe2[1];
int u2 = (-b - coe2[3] - coe2[0] * (n - t - 1)) / coe2[1];
int64 L1 = (1 - u1) / v;
int64 L2 = (1 - u2) / v;
int64 R1 = (n - delta - t - 1 - u1) / v;
int64 R2 = (n - delta - t - 1 - u2) / v;
The code ensures that \(L1 <= R1\), \(L2 <= R2\), and \(L1 <= L2\):
if (v < 0) {
swap(L1, R1);
swap(L2, R2);
}
if (L1 > L2) {
swap(L1, L2),
swap(R1, R2);
}
The problem now reduces to calculating:
\[\sum_{L1 \le L \le L2} \left \vert [L, L+D] \cap [1, n - delta - t - 1] \right \vert\]where \(D = R1 - L1 = R2 - L2\) is a constant.
Let \(g(L) = \left \vert [L, L+D] \cap [1, n - delta - t - 1] \right \vert\). Analyzing g(L)
at key points:
We consider ranges \([1-D, 1]\) and \([2, 1+D]\) where g presents an arithmetic increment in the first one and decrement in the second one.
The summation can then be expressed as:
\[\sum_{L1 \le L \le L2} [1-D \le L \le 1] g(L) + \sum_{L1 \le L \le L2} [2 \le L \le 1+D] g(L)\]Final Optimized C++ Code:
for (all possible a) {
int tmp = a - (2 * coe2[3] - coe1[3]);
if (IsOdd(tmp)) continue;
int b = tmp / 2;
if (!IsValid(b)) continue;
if (!SameParity(coe1[3], a)) continue;
int v = -coe2[2] / coe2[1]; // Note: |v| = 1.
int u1 = (-b - coe2[3] - coe2[0] * 1) / coe2[1];
int u2 = (-b - coe2[3] - coe2[0] * (n - t - 1)) / coe2[1];
int64 L1 = (1 - u1) / v;
int64 L2 = (1 - u2) / v;
int64 R1 = (n - delta - t - 1 - u1) / v;
int64 R2 = (n - delta - t - 1 - u2) / v;
if (v < 0) {
swap(L1, R1);
swap(L2, R2);
}
if (L1 > L2) {
swap(L1, L2),
swap(R1, R2);
}
if (L2 >= 1 - D && L1 <= 1) {
int64 u = 1 + max(L1, 1 - D) - (1 - D);
int64 v = 1 + min(L2, 1LL) - (1 - D);
ans += ApSumMod(u, v, mod) * f(a, b);
}
if (L2 >= 2 && L1 <= 1 + D) {
int64 u = D + 1 - (max(L1, 2LL) - 1);
int64 v = D + 1 - (min(L2, 1 + D) - 1);
ans += ApSumMod(v, u, mod) * f(a, b);
}
}
where ApSumMod(x, y, m)
calculates \(\sum_{i=x}^{y}i\pmod{m}\).
Observations are required
The constraints \(\left \vert coe2_{0,1,2}\right \vert = 1\) and \(coe1_i = 2\ coe2_i\) for \(i = 0,1,2\) were derived through careful observation of experiments.